Abstract — We propose a new algorithm for Turbo code interleaver design, which is based on the conventional s-random approach and whose complexity grows only linearly with the interleaver length.

Designing the interleaver \(\pi = (\pi_1; \ldots; \pi_K) \) of length \(K \) of a Turbo code serves to increase the code’s minimum distance \(\delta_{\text{min}} \) and hence to lower the error floor of the Word and Bit Error Rates (WER/BER). An efficient method was presented in [1]. Examinations show that for so-designed interleavers, Error Rates (WER/BER) are spread to distant positions in the Turbo encoder input \(u \) and can be ignored, since we consider and try to avoid only error patterns. Otherwise the associated codeword has large weight. We must thus discard \(i-3 \) from \(A_l \), which prevents the assignment \(\pi_l = i-3 \), which would otherwise complete the unlucky mapping in Fig. 1. When all unfavourable values have been discarded from \(A_l \), then \(\pi_l \) is randomly chosen from the remaining values. The backtracking algorithm works also for error patterns of weight \(> 2 \). The complexity of a complete interleaver design grows linearly with \(K \).

We verified the proposed algorithm by designing an interleaver of length \(K = 290 \) for a Turbo code of rate 1/2 employing \(M = 2 \) component codes (generator polynomials: \((1;5/7)\)). In the design, we used \(s = 8 \) and considered all error patterns of weight \(\leq 3 \). For a termination of both component trellises, this Turbo code attains \(\delta_{\text{min}} = 14 \). Fig. 2 shows the WER (upper curves) and BER (lower curves) for varying \(E_b/N_0 \) (received energy per information bit over the one-sided noise power spectral density) for a simulated transmission using coded BPSK over an AWGN channel. The performance is compared to using a pure \(s \)-random interleaver [1] with \(s = 10 \) (expected \(\delta_{\text{min}} \leq 12 \) and a uniform interleaver [2] (mean \(\delta_{\text{min}} \leq 6 \)) of the same length. We can clearly see the improved BER and particularly WER for higher \(E_b/N_0 \).

References
